Tài liệu kỹ thuật

Cùng tìm hiểu về Bơm nước năng lượng mặt trời

Cùng tìm hiểu về Bơm nước năng lượng mặt trời

Hệ thống là sự kết hợp lý tưởng của nhu cầu nước tưới và nguồn năng lượng mặt trời vô tận miễn phí, giữ gìn môi trường, tiết kiệm năng lượng và giảm tối đa chi phí.

Ưu Điểm & Ứng Dụng Khi Sử Dụng Hệ Thống Bơm Năng Lượng Lượng Mặt Trời

Ưu Điểm

  • Mặt trời là nguồn tài nguyên vô tận, sạch sẽ và hoàn toàn miễn phí. Bạn có thể sử dụng thoải mái mà không cần phải trả bất kỳ chi phí nào.
  • Hệ thống bơm năng lượng mặt trời thân thiện với môi trường, hoàn toàn không gây hại và không gây bất kỳ tiếng ồn nào.
  • Hệ thống bơm trực tiếp từ nắng có độ bền cao, hầu như không phát sinh chi phí vận hành.
  • Hệ thống hoạt động hoàn toàn tự động, tự động bơm khi có nắng, và tự động nghỉ khi không có nắng hoặc vào ban đêm.
  • Chi phí cho một hệ thống thấp, tuổi thọ hệ thống cao, hệ thống đạt hiệu quả kinh tế cao.
  • Việc lắp đặt hệ thống khá đơn giản, việc bảo trì hệ thống dễ dàng.
  • Sử dụng bơm 3 pha nên hiệu suất cao, có thể tận dụng bơm hiện hữu của khách hàng, cũng như hệ thống ống nước, bộ hút sâu..mà không cần thay bơm mới mà chỉ cần đổi 1 pha sang 3 pha.

Ứng Dụng

  • Hệ thống là sự kết hợp lý tưởng của nhu cầu nước tưới và nguồn năng lượng mặt trời vô tận miễn phí, giữ gìn môi trường, tiết kiệm năng lượng và giảm tối đa chi phí. Đây là giài pháp lý tưởng mới cho các trang trại trồng rau, cây ăn trái, cao su, cafe, điều, tiêu, thanh long… Nước được bơm ngay cả vào những ngày có mây và mù sương.
  • Ứng dụng năng lượng mặt trời trong cung cấp năng lượng cho máy bơm nước giúp giảm chi phí điện năng, là điểm thăm quan lý tưởng cho mô hình nông nghiệp công nghệ cao.
  • Ứng dụng cho trang trại, những vùng chưa có điện và cả những vùng có điện để thay thế những nhược điểm của máy phát khi dùng xăng dầu giá thành ngày càng cao, ô nhiễm môi trường cũng như giảm số điện hàng tháng.
  • Ứng dụng cho các biệt thự, công ty để tưới vườn cỏ, cây trong sân vườn tự động tưới .

CÁC GIẢI PHÁP BƠM NĂNG LƯỢNG MẶT TRỜI

Hệ thống bơm trực tiếp từ nắng công suất nhỏ
Đây là hệ thống sử dụng cho những bơm có công suất nhỏ từ 0.5- 1HP

Nguyên Lý Hoạt Động

Điện mặt trời thu được từ tấm pin mặt trời sẽ qua bộ điều khiển sạc nạp vào ắc quy, Ắc quy chỉ đóng vai trò ổn áp và lấy điện khi trời không có nắng. Nên chỉ sử dụng 1 Ắc quy ổn áp. Điện áp từ ắc quy sẽ được đưa vào bộ đổi nguồn Switching hoặc sine chuẩn, bộ đổi nguồn này có tác dụng nâng cao điện áp phù hợp với ngõ vào của bộ điều khiển bơm, bộ điều khiển được cài đặt các thông số để bảo vệ động cơ và nhờ điều khiển tốc độ động cơ khởi động không bị vượt dòng.

Ưu điểm của hệ thống bơm trực tiếp công suất nhỏ

Dùng với bơm công suất nhỏ hơn 1Hp, thích hợp cho bơm nước gia đình – Điều khiển bơm trực tiếp từ nắng
Điều khiển bơm trực tiếp từ nắng – Ắc quy chỉ đóng vai trò ổn định hệ thống và lấy điện khi trời không nắng (tăng hiệu suất hấp thu nắng)
Sử dụng bơm 3 pha (3 Pha – 220V ) nên hiệu suất đạt cao nhất. Có thể tận dụng bơm hiện hữu của khách hàng ( quấn lại) cũng như hệ thống ống nước, bộ hút sâu… mà không cần thay bơm mới, chỉ cần đổi lại từ 1 pha sang 3 pha.
Độ bền rất cao: Tấm pin độ bền 30 năm. Ắc quy độ bền thường trên 5 năm. Chỉ sử dụng 1 ắc quy đóng vai trò ổn định nên chi phí cho ắc quy sau này là không đáng kể
Hệ thống bơm trực tiếp từ nắng công suất lớn
Sử dụng cho động cơ có công suất lớn từ 1HP- vài chục HP.

Nguyên Lý Hoạt Động

Nguyên lý hoạt động của máy bơm rất đơn giản. Điện thu được từ hệ pin ( điện DC áp cao ) sẽ được đưa vào bộ điều khiển bơm được chuyển thành điện xoay chiều 3 pha, sau đó đưa trực tiếp vào máy bơm.

Ưu điểm của hệ thống bơm trực tiếp công suất lớn

Chi phí đầu tư ban đầu thấp, thời gian hoàn vốn nhanh
Hệ thống không dùng ắc quy nên không cần bảo trì sau thời gian sử dụng. Hoạt động hệ thống rất bền. Độ bền hệ thống phụ thuộc vào độ bền tấm pin. Tấm pin năng lượng mặt trời sử dụng của tập đoàn UE – SINGAPORE có độ bền trên 30 năm.
Hoạt động hoàn toàn tự động
Có thể kết hợp với điện lưới hoặc máy phát điện xăng/dầu để bơm ban đêm.

Bộ điều khiển ứng dụng công nghệ điện mặt trời tiên tiến nhất hiện nay, Phương pháp MPPT giúp nâng cao tối đa hiệu suất hệ pin, Phương pháp khởi động mềm giúp động cơ chạy mượt và bảo vệ tối đa máy bơm.


Sau bao lâu tấm pin năng lượng mặt trời ngừng sản xuất ra điện?

Sau bao lâu tấm pin năng lượng mặt trời ngừng sản xuất ra điện?

Dù cho nhiều người tin rằng tuổi thọ của tấm pin năng lượng mặt trời là 25 năm, một số lượng các tấm pin cũ đã đạt con số này. Khi Kyocera thử nghiệm tấm pin năng lượng mặt trời đã 30 năm tuổi vào năm ngoái, họ nhận thấy nó vẫn đạt hiệu suất sản xuất điện tới 90.4%.

Dù cho nhiều người tin rằng tuổi thọ của tấm pin năng lượng mặt trời là 25 năm, một số lượng các tấm pin cũ đã đạt con số này. Khi Kyocera thử nghiệm tấm pin năng lượng mặt trời đã 30 năm tuổi vào năm ngoái, họ nhận thấy nó vẫn đạt hiệu suất sản xuất điện tới 90.4%.

Có nhiều tấm pin đã 37 năm tuổi của Arco Solar (ngày nay là SolarWorld USA) vẫn đang hoạt động. Như vậy sau bao lâu tấm pin năng lượng mặt trời ngừng sản xuất ra điện?

Peter Varadi, đồng sáng lập Solarex (một trong các công ty năng lượng mặt trời đầu tiên vào những năm 1973 – 1983) và là tác giả của “Báo cáo về sự tăng trưởng nhanh chóng của ngành năng lượng mặt trời” đã đề nghị  Tiến sỹ John Wohlgemuth trả lời câu hỏi: các tấmpin năng lượng mặt trời có tuổi thọ bao lâu?

Tiến sỹ Wohngemuth bắt đầu làm việc tại Solarex vào năm 1976. Ông tiếp tục làm việc cho BP Solar sau khi công ty này mua lại Solarex, và ông trở thành trưởng bộ phận nghiên cứu về độ bền tấm pin tại phòng thí nghiệm năng lượng tái tạo quốc gia.

Trong email trả lời tôi, ông viết:

Có vài tài liệu tại hội nghị EUPVSEC lần trước báo cáo về khả năng hoạt động của các tấm pin Solarex sau 25 năm sử dụng và tôi có một số tài liệu đó chứng minh chúng vẫn hoạt động sau thời gian đó.

Tôi không nghĩ rằng các tấm pin đời cũ có thể hoạt động 50 năm. Đầu tiên là vì vật liệu EVA được sử dụng đang đổi màu – đồng nghĩa với suy giảm dòng ngắn mạch (khoảng 0.5% mỗi năm) và  giảm độ bám dính – các kết quả gần đây chỉ ra rằng các tấm pin Arco giảm độ bám dính 10% giữa lớp EVA và tấm kính sau 27 năm sử dụng.

Các tấm pin đời cũ đang giảm công suất đầu ra. Như tôi đã nói trước đây khoảng 0.5% mỗi năm do sự thay đổi màu sắc tấm EVA. Chúng cũng dần dần mất đi tính kết dính do sử dụng chất kết dính cứng hơn so với chất kết dính đang được sử dụng ngày nay. Khi các tấm pin đạt 25 đến 30 năm, chúng sẽ giảm hiệu suất còn khoảng 80%.

“Tôi không chắc về điều gì tôi đang kỳ vọng từ các tấm pin đang sản xuất hiện tại. Chúng được sử dụng nguyên vật liệu tốt hơn, được xử lý để không bị đổi màu và chất kết dính có độ co giãn để không tạo lực ép xuống các mối hàn hay các tế bào quang điện trên bề mặt tấm pin. Do vậy bạn phải nhìn vào quy trình kiểm soát trong sản xuất. Tôi nghĩ rằng có nhiều nhà sản xuất mới có một quy trình kiểm soát ít nhất tốt như chúng tôi có cách đây 25 năm. Mặt khác nếu các nhà sản xuất làm quá nhiều việc để giảm chi phí thì chất lượng sẽ bị ảnh hưởng. Vì vậy một số tấm pin mới có thể tốt như các tấm pin sản xuất vào thập niên 1980s và 1990s, tuy nhiên một số khác có thể không tốt như vậy. Chúng ta phải tìm hiểu làm thế nào phân biệt loại pin nào tốt và loại nào sẽ không tồn tại được lâu.”

Như vậy một số tấm pin đời cũ có thể có tuổi thọ lâu hơn 40 năm, có thể lâu hơn mặc dù hiệu suất có bị suy giảm. Và một số công ty công nghệ tốt hơn có thể sản xuất các tấm pin thậm chí tuổi thọ cao hơn.


Tái Chế Tế Bào Năng Lượng Mặt Trời Silicon: Một Tương Lai Tươi Sáng

Tái Chế Tế Bào Năng Lượng Mặt Trời Silicon: Một Tương Lai Tươi Sáng

Các nhà khoa học Hàn Quốc đã phát triển một phương pháp bền vững để tái tạo những phiến silicon (solar wafer) từ pin năng lượng mặt trời cũ và sử dụng silicon tái chế đó làm thành những tế bào năng lượng mặt trời mới.

Các nhà khoa học Hàn Quốc đã phát triển một phương pháp bền vững để tái tạo những phiến silicon (solar wafer) từ pin năng lượng mặt trời cũ và sử dụng silicon tái chế đó làm thành những tế bào năng lượng mặt trời mới.

Khai thác năng lượng mặt trời ứng dụng công nghệ quang điện giảm thiểu sự phụ thuộc vào nguồn năng lượng từ nhiên liệu hoá thạch. Hàng triệu tấm pin năng lượng mặt trời đảm bảo hiệu suất khoảng 25 năm được lắp đặt mỗi năm sẽ tăng lượng rác thải tế bào năng lượng mặt trời đáng kể trong vài thập kỷ tới. Vì vậy yêu cầu tái chế tại các nhà máy sản xuất pin năng lượng mặt trời nhằm giảm tải lượng rác thải từ thiết bị điện – điện tử (WEEE) là điều tất yếu. Việc chế tạo những tấm pin mới từ nguyên vật liệu tái chế không chỉ duy trì độ tin cậy của ngành công nghiệp xanh, mà còn giảm chi phí sử dụng năng lượng mặt trời một cách đáng kể.

Axit mạnh và bazơ loại bỏ các điện cực kim loại; lớp phủ, lớp cực phát (emitter) và các lớp khác được tán thành bột trong một máy nghiền, để lại những phiến silicon nguyên vẹn.

Nhiều công nghệ tái chế tế bào năng lượng mặt trời silicon hiện tại đều bắt đầu bằng việc tách các phiến silicon ra khỏi tấm pin. Ngay sau đó, các lớp này đều được lược bỏ các tạp chất bằng dung dịch axit hydrofluoric. Dung dịch axit này không những tác động xấu đến môi trường mà còn có thể gây bỏng thậm chí tử vong khi tiếp xúc với da.

Nochang Park và cộng sự thuộc Viện Công nghệ Điện tử Hàn Quốc và Viện Công Nghệ Khoa Học Hàn Quốc đã phát triển một phương pháp hoàn toàn mới tái chế những tấm pin năng lượng mặt trời silicon hết hạn sử dụng. Theo Chemistry World, ông Park nói rằng đây là phương pháp đầu tiên không sử dụng chất hoá học độc tính cao như axit hydrofluoric. Đầu tiên, tấm pin năng lượng mặt trời được nung nóng tới 480°C trong lò để chất keo bên trong các phiến silicon bốc hơi. Thật ngạc nhiên, nếu nhiệt độ tăng lên chính xác 15°C mỗi phút thì không có phiến silicon nào vỡ trong suốt quá ngày nung nóng. Sau khi một phiến silicon nguyên vẹn được lấy ra từ tấm pin, thì điện cực bạc (điện hoá) của nó được tách ra khỏi bề mặt trên cùng bằng axit nitric. Các lớp phủ AR, lớp cực phát và lớp chuyển tiếp p-n sau đó được nghiền thành bột. Cuối cùng, kali hydroxide khắc điện cực nhôm ra khỏi phía sau của phiến silicon. Tế bào năng lượng mặt trời được tái tạo từ những phiến silicon tái chế có hiệu suất ngang bằng những tấm pin được làm từ silicon mới.

Steven Giard, nghiên cứu sự bền vững của cấu trúc nano tại đại học Wisconsin-Whitewater, US đánh giá đây là một phương pháp đáng ghi nhận. “Điều thực sự khác biệt của phương pháp mới này là nó thực sự đơn giản, có thể mở rộng, chi phí không đắt và ít độc hại… Tôi khá bất ngờ rằng tỉ lệ họ có thể phục hồi những phiến silicon nguyên vẹn lên đến 100%”. Efrain Ochoa, chuyên gia tế bào năng lượng mặt trời silicon thuộc đại học Malaga, Tây Ban Nha thực sự ấn tượng “Đây là phương pháp chứng minh một bước tiến quan trọng trong lĩnh vực tái sinh các phiến silicon, một giải pháp tiềm năng mang lại ảnh hưởng tích cực đến ngành công nghiệp năng lượng tái tạo”


5 CÔNG NGHỆ NĂNG LƯỢNG MẶT TRỜI THAY ĐỔI THẾ GIỚI

5 CÔNG NGHỆ NĂNG LƯỢNG MẶT TRỜI THAY ĐỔI THẾ GIỚI

(nangluong.edu.vn) – Với việc chúng ta đang làm cạn kiệt các nguồn tài nguyên thiên nhiên, có nhiều ý kiến cho rằng nguồn năng lượng tái tạo chính là nguồn năng lượng tương lai.

(nangluong.edu.vn) – Với việc chúng ta đang làm cạn kiệt các nguồn tài nguyên thiên nhiên, có nhiều ý kiến cho rằng nguồn năng lượng tái tạo chính là nguồn năng lượng tương lai. Liệu có nguồn năng lượng nào dồi dào hơn năng lượng mặt trời – nguồn năng lượng miễn phí có sẵn khoảng 12 tiếng mỗi ngày và thậm chí nhiều hơn ở một vài nước để khai thác? Năng lượng mặt trời đang dần trở thành một trong những nguồn năng lượng tái tạo được tận dụng nhiều nhất qua nhiều năm và các nhà sáng tạo đang tìm kiếm nhiều cách tốt hơn để khai thác nguồn năng lượng này. Đó là các dự án ứng dụng lắp đặt pin năng lượng mặt trời trên mái nhà, phương tiện giao thông, quần áo, điện thoại đi động và nhiều hơn nữa.

Dưới đây là một trong những phát minh thay đổi thế giới về nguồn năng lượng tái tạo:

1. Chảo gương mặt trời (Mirrored solar dishes)


Được biết đến với nhiều ưu điểm nổi trội, nhiều người thường thắc mắc về lý do tại sao năng lượng mặt trời không phải là nguồn năng lượng duy nhất. Điều đó vẫn chưa thành hiện thức vì các thiết bị năng lượng mặt trời còn có giá thành khá cáo. Tận dụng năng lượng từ những vùng được đánh giá là nhiều năng lượng mặt trời như sa mạc cũng không phải là một điều dễ. Tuy nhiên, các nhà nghiên cứu tin rằng việc phát minh ra những chảo gương mặt trời (mirrored solar dishes) có thể là giải phát tối ưu nhất để khai thác năng lượng mặt trời với giá rẻ nhất.
Hệ thống thu năng lượng mặt trời với chi phí thấp có thể thu ánh sáng mặt trời 2000 lần. Chảo mặt trời được bao phủ bởi nhiều lớp gương giúp hướng tia nắng quy tụ vào một vùng nhỏ nhất định. Hình lõm lòng chảo cho phép thu hầu hết tia nắng từ mặt trời xuyên suốt ngày. Thiết kế hệ thống thu năng lượng mặt trời hình lõm được đánh giá là hiệu quả hơn hệ thống pin. Trong khi những hệ thống thông thường chỉ chuyển hoá khoảng 20% nắng từ mặt trời thành năng lượng thì hệ thống chảo gương mặt trời có thể chuyển hoá lên đến 80%.
2. Pin điện Tesla

Một thử thách khác khi ứng dụng nguồn điện năng lượng mặt trời tái tạo ngoài chi phí thiết bị cao là công nghệ lưu trữ năng lượng. Lưu trữ năng lượng là chìa khoá để biến năng lượng mặt trời trở nên phổ biến hơn ngày nay và đó là nguồn cảm hứng từ pin điện của Tesla. Được mệnh danh là “Năng lượng Tesla”, pin điện được thiết kế nhằm lưu trữ năng lượng mặt trời hiệu quả hơn nhưng loại pin khác trên thị trường hiện nay.
Kết hợp công nghệ pin và công nghệ mặt trời là cách tốt nhất để đảm bảo dòng năng lượng ổn định có giá thành rẻ hơn năng lượng được khai thác từ các nhà máy đốt nhiên liệu hoá thạch. Theo các nhà sáng kiến từ Tesla, họ đang đến gần mục tiêu phổ biến hoá sản phẩm pin của mình tới các công ty thương mại.
“Chia sẻ năng lượng mặt trời” là giải pháp cho những người không có mái nhà để lắp đặt hệ thống pin năng lượng mặt trời bằng việc chia sẻ nguồn năng lượng từ các hệ thống của hàng xóm với chi phí thấp hơn so với việc họ phải trả cho công ty cung cấp điện.
3. Hệ thống điện mặt trời di động:


Các nước và khu vực phát triển đang hồi phục sau thiên tai tận dụng tối đa từ nguồn năng lượng thay thế như năng lượng mặt trời, nguồn năng lượng hiệu quả, an toàn và rẻ hơn máy phát điện.

Các nhà máy điện có tác động to lớn đến việc giúp các nước hồi phục sau thiên tai bằng việc ứng dụng các hệ thống năng lượng mặt trờidi động cho việc chiếu sáng và các trạm sạc điện thoại phục vụ nhân viên cứu trợ. Bộ sản phẩm năng lượng di động bao gồm tấm pin năng lượng mặt trời và hộp điều khiển có hệ thống dự trữ có vai trò thu và lưu trữ năng lượng. Nỗ lực mới nhất trong việc sử dụng nguồn điện di động là sử dụng máy in 3D chạy bằng lượng mặt trời để cung cấp thiết bị y tế tại điểm cứu trợ mà chi phí nhỏ.
4. Khử muối bằng mặt trời

Nguồn điện mặt trời chuyển hoá năng lượng từ mặt trời thành điện trong khi việc khử muối với mục đích loại bỏ những khoáng chất không cần thiết từ nước biển để sử dụng và cho mục đích nông nghiệp. Vậy làm thế nào để kết hợp hai quá trình đó?
Các nhà nghiên cứu đã phát kiến ra máy chạy bằng lượng mặt trời có chức năng biến nước lợ thành nước uống bằng cách tách muối ra khỏi nước. Bên cạnh khử muối, máy có thể thanh lọc và tẩy sạch nước bằng tia cực tím (Ultraviolet Rays). Nhiều vùng đất ngày nay vẫn phải sống trong điều kiện thiếu nước dù 70% trái đất được bao phủ bởi nước. Sáng kiến này là một trong những giải pháp hiệu quả nhất cung cấp nguồn nước sạch cho sinh hoạt.
5. Phương tiện chạy bằng năng lượng mặt trời


Công nghệ năng lượng mặt trời đã thúc đẩy mạnh mẽ việc cải thiện hệ thống phương tiện di chuyển cả trên không và mặt đất. Chúng ta tiếp xúc nhiều với ánh năng mặt trời trong lúc lái xe, đi tàu hay bay trên không. Các nhà khoa học đã thử nghiệm rất nhiều cách để khai thác nguồn năng lượng này. Cùng với những sáng chế phương tiện di chuyển chạy bằng điện, đã đến lúc chúng ta nên bắt đầu sử dụng năng lượng mặt trời thay thế năng lượng điện.
“Solar Impulse 2” là chiếc máy bay năng lượng mặt trời đầu tiên. Phi công có thể bay đến mọi nơi trên thế giới ngay cả trong đêm cùng với chiếc máy bay được cung cấp nhiên liệu chỉ từ năng lượng mặt trời. Ở Hà Lan còn có cả một con đường chỉ dài bằng 230 feet (70m) tạo ra 3000kWh, tương đương với cung cấp năng lượng cho một hộ gia đình một người trong suốt một năm.


Pin kim loại lỏng – Bước đột phá phát triển năng lượng tái tạo

Pin kim loại lỏng – Bước đột phá phát triển năng lượng tái tạo

Tại Triển lãm Năng lượng và Điện thế giới khu vực châu Á 2015, giáo sư Donald Sadoway – Viện Công nghệ Massachusettes, Mỹ – đã công bố ý tưởng về chế tạo pin kim loại lỏng.

Tại Triển lãm Năng lượng và Điện thế giới khu vực châu Á 2015, giáo sư Donald Sadoway – Viện Công nghệ Massachusettes, Mỹ – đã công bố ý tưởng về chế tạo pin kim loại lỏng.

Công trình nghiên cứu này khi hoàn thiện sẽ góp phần tạo ra những trạm lưu trữ điện quy mô lớn, hiệu suất cao với giá thành rẻ, làm nền tảng quan trọng để đưa các nguồn năng lượng tái tạo như điện gió, điện mặt trời trở thành nguồn năng lượng chính trong tương lai.

Điện gió hay điện mặt trời là những nguồn năng lượng tái tạo phổ biến nhưng đều có hạn chế là nguồn năng lượng không ổn định, phụ thuộc vào thời tiết. Trong khi đó, các pin ắc-quy tích điện hiện nay chỉ có công suất nhỏ, giá thành cao và chỉ có thể đáp ứng quy mô hộ gia đình.

Giáo sư Donald Sadoway đến từ Viện Công nghệ Massachusettes, Mỹ đã tìm ra lời giải khi phát minh ra pin kim loại lỏng với các thành phần điện cực và điện phân đều là chất lỏng.

Giáo sư Donald Sadoway cho biết: “Thông thường pin vẫn có thanh đặc làm cực dương và dung dịch điện phân. Tôi cho rằng hình thức như vậy không phù hợp cho việc tích điện quy mô lớn và bắt đầu tìm hướng khác. Khi tôi nhìn thấy quy trình điện phân để sản xuất nhôm và thấy rằng nó duy trì dòng điện liên tục cường độ cao, ổn định và chi phí thấp, tôi nghĩ đến việc chuyển mô hình này vào chế tạo pin kim loại lỏng”.

Các nghiên cứu và thử nghiệm ban đầu cho thấy, loại pin kim loại lỏng này có công suất mạnh hơn nhiều so với pin truyền thống; độ tiêu hao rất thấp, theo tính toán vận hành 10 năm mới chỉ sụt 15% dung lượng.

Giáo sư Donald Sadoway cho biết thêm: “Pin kim loại lỏng giúp thiết lập ra các hệ thống lưu trữ năng lượng cố định, rất hữu ích khi đưa điện đến với những khu vực vẫn chưa thể tiếp cận với nguồn điện. Với hệ thống pin này, người ta có thể kết hợp tích trữ nguồn điện mặt trời, điện gió và thiết lập mạng điện nhỏ rất nhanh để cung cấp điện cho khu vực mà ko cần phải kết nối các trạm phát điện lớn tập trung, như vậy sẽ làm giảm giá thành và tăng độ tin cậy”.

Giáo sư Donald Sadoway cho biết, hiện ông và các cộng sự tiếp tục nghiên cứu thử nghiệm để tìm ra loại hợp kim làm điện cực có nhiệt độ nóng chảy thấp nhất và mức độ tiêu hao ít hơn nữa để có thể đưa vào sản xuất đại trà trong thời gian tới. Phát minh của ông sẽ tạo điều kiện để các nguồn năng lượng tái tạo sẽ ngày càng phát triển và được sử dụng rộng rãi hơn trong tương lai.


Pin Lithi: Tạo động lực phát triển ngành năng lượng tái tạo

Pin Lithi: Tạo động lực phát triển ngành năng lượng tái tạo

Tương lai của công nghệ tái tạo có lẽ phụ thuộc vào những tiến bộ kĩ thuật của một loại pin, đó là pin Lithi. Với kích cỡ nhỏ, pin Lithi thường được tìm thấy trong đồ chơi trẻ em, máy tính xách tay…

Tương lai của công nghệ tái tạo có lẽ phụ thuộc vào những tiến bộ kĩ thuật của một loại pin, đó là pin Lithi. Với kích cỡ nhỏ, pin Lithi thường được tìm thấy trong đồ chơi trẻ em, máy tính xách tay…

Chìa khóa của sự phát triển bền vững

Pin Lithi là một loại pin tái sử dụng, có nghĩa là có thể sạc lại để dùng tiếp. Hiện pin tái sử dụng chỉ chiếm 10% so với tổng số lượng pin được sử dụng, nhưng lại chiếm 60% về giá trị sử dụng. Ngoài pin Lithi, pin tái sử dụng còn bao gồm các loại pin axit chì, niken-cađimi, natri lưu huỳnh…

Thị trường pin Lithi sẽ phát triển mạnh mẽ trong thời gian tới – Ảnh minh họa
Theo báo cáo về thị trường pin thế giới năm 2012, nhu cầu về pin dùng một lần và pin tái sử dụng được dự đoán sẽ tăng 8,5% mỗi năm và đạt 114 tỷ USD vào năm 2016. Trung Quốc đang là thị trường pin lớn nhất và phát triển nhanh nhất nhờ vào việc sản xuất thiết bị điện tử và các loại phương tiện giao thông.

Thị trường pin Lithi dự kiến sẽ tiếp tục tăng trưởng khoảng 10% hàng năm về công suất, do sự phổ biến của thiết bị điện tử cầm tay phát triển rất nhanh đã giúp pin Lithi và pin tái sử dụng mở rộng thị phần. Báo cáo của Marketresearch.com gần đây cho biết, chi phí của pin Lithi sẽ giảm 45% vào năm 2022.

Pin Lithi lần đầu tiên được nhắc tới vào năm 1970 và được thương mại hóa từ năm 1990.

Từ đó tới nay, thị trường pin Lithi đã phát triển và đạt 11 tỷ USD vào năm 2010, dự kiến sẽ đạt 43 tỷ USD vào năm 2020.

Theo Global Industry Analysts (GIA), pin tiêu dùng trên toàn cầu dự kiến sẽ đạt 55,4 tỷ USD vào năm 2017.

Tương lai tươi sáng của pin Lithi

Pin Lithi sẽ chiếm ưu thế ở thị trường pin tiêu dùng và pin dành cho ô tô trong một thời gian dài bởi tính hiệu quả và mật độ năng lượng, thời gian sử dụng dài và khá an toàn.

Hệ thống pin Lithi kim loại có thể sẽ có mật độ năng lượng cao hơn. Nhưng những vấn đề nội tại của pin Lithi kim loại như tính thuận nghịch, sự an toàn… cần được giải quyết để việc sử dụng loại pin này khả thi hơn.

Những nghiên cứu hiện nay đang cố gắng cải thiện hiệu quả và giảm kích cỡ của pin Lithi. Tháng 8/2012, các nhà nghiên cứu tại Học Viện khoa học và công nghệ Hàn quốc (KAIST) đã phát triển một công nghệ mới cho pin Lithi và công bố đây là công nghệ tạo ra loại pin có mật độ năng lượng cao nhất từ trước tới giờ.

Công nghiệp sản xuất pin Lithi còn có một hướng cách mạng hóa khác là sự phát triển của loại pin này giúp cho máy tính bảng có thể mỏng như một tờ giấy và thậm chí có thể gấp được.

Sự phát triển của pin Lithi dành cho công nghệ năng lượng tái tạo đòi hỏi sự hợp tác tham gia của các nhà tiên phong về công nghệ pin tiên tiến, các viện nghiên cứu, các chính sách và sự khuyến khích của các chính phủ để khích lệ những khám phá mới về công nghệ dự trữ năng lượng.


Trời nóng, mất điện. Phải làm sao?

Trời nóng, mất điện. Phải làm sao?

Đang là mùa nóng, lại hay mất điện, nhiều gia đình đặc biệt là gia đình có trẻ nhỏ rất chật vật với cái nóng gắt như đổ lửa.

Đang là mùa nóng, lại hay mất điện, nhiều gia đình đặc biệt là gia đình có trẻ nhỏ rất chật vật với cái nóng gắt như đổ lửa.

Một số giải pháp như mua máy phát điện thì phải đi mua xăng dầu (vì không ai dám mua dự trữ rất nguy hiểm), cũng lại phải chạy ngoài trời nắng nóng, nổ máy phát điện thì không phải ai cũng quen, như các mẹ các bà ở nhà một mình với cháu thì chào thua. Giả sử có nổ được máy phát điện rồi thì tiếng ồn, mùi khói cũng gây khó chịu hoặc nguy hiểm cho sức khoẻ do khí độc CO thải ra. Vậy giải pháp tốt nhất hiện nay là gì?

Giải pháp hiện đại, tiết kiệm và an toàn hơn đó là máy phát điện năng lượng mặt trời. Hiện nay các sản phẩm máy phát điện năng lượng mặt trời SolarV sản xuất tại Việt Nam rất đa dạng từ sản phẩm chỉ hơn 1 triệu đồng dùng đèn và sạc điện thoại, vài triệu đồng dùng đèn, quạt, sạc điện thoại hay lớn hơn một chút xem Tivi…như SV-COMBO6S, SV-COMBO22S, SV-COMBO35S, SV-COMBO65S, SV-COMBO100, SV-COMBO1200, SV-COMBO400V… Ưu điểm của máy phát điện năng lượng mặt trời SolarV là không cần sử dụng điện lưới, chỉ cần lắp đặt 1 lần và sử dụng hằng ngày. Độ bên của tấm pin mặt trời trên 30 năm, các thiết bị điều khiển khác do SolarV sản xuất sử dụng công nghệ điều khiển bằng vi xử lý hiệu năng tốt và chế độ bảo hành 1 đổi 1, hệ ắc quy sử dụng hằng ngày và có chế độ bảo vệ nghiêm ngặt nên độ bền cao. Người dùng không cần phải thao tác vì thiết bị đã được cắm sẵn vào máy phát điện được bật 24/24 nên không chỉ khi mất điện mới sử dụng mà sử dụng hằng ngày, tiết kiệm thêm tiền điện hằng tháng và đặc biệt không lo khi nghe hàng xóm la to lên “cúp điện rồi!”

Hình: Máy phát điện năng lượng mặt trời SolarV SV-COMBO400V
Sản phẩm đột phá năm 2015 thiết kế di động, tất cả trong 1 ngõ ra 220V sine chuẩn và ngõ ra DC cho đèn, quạt…

Hình: máy phát điện năng lượng mặt trời dùng đèn, quạt và sạc điện thoại

Misaco có cung cấp đi kèm các thiết bị đồng bộ như quạt đứng DC, đèn Led DC, bộ đổi nguồn chuẩn Switching để dùng Tivi, đầu máy mà không sợ ảnh hưởng đến thiết bị và tiêu hao cho bộ đổi đó, và còn rất nhiều sản phẩm và giải pháp hoàn hảo khác phục vụ tối đa nhu cầu của khách hàng. Quý khách hàng cần thêm thông tin hoặc cần mua hàng xin gọi 0650 650 4567 để được tư vấn.

 


Nhìn lại chặng đường phát triển 140 năm của pin NLMT

Nhìn lại chặng đường phát triển 140 năm của pin NLMT

Hiện nay, việc khai thác và sử dụng năng lượng mặt trời không còn là vấn đề quá xa lạ đối với mỗi người chúng ta. Năng lượng mặt trời là một trong những loại năng lượng xanh hứa hẹn sẽ được áp dụng rộng rãi trong cuộc sống của con người trong tương lai.

Hiện nay, việc khai thác và sử dụng năng lượng mặt trời không còn là vấn đề quá xa lạ đối với mỗi người chúng ta. Năng lượng mặt trời là một trong những loại năng lượng xanh hứa hẹn sẽ được áp dụng rộng rãi trong cuộc sống của con người trong tương lai.

Đây là một nguồn năng lượng dường như vô tận, dễ dàng khai thác sử dụng và giúp bảo vệ được môi trường sống của con người. Và dĩ nhiên, pin năng lượng mặt trời chính là một bộ phận quan trọng trong việc sử dụng nguồn năng lượng của tương lai này. Hôm nay, chúng tôi sẽ điểm lại những cột mốc quan trọng trong quá trình hình thành và phát triển của pin mặt trời.

Mọi chuyện bắt đầu từ phát hiện hết sức tình cờ của kỹ sư Smith…

Mở đầu

Kỹ sư người Anh Willoughby Smith (1828-1891), người đầu tiên phát hiện ra hiện tượng quang điện​

Mọi chuyện bắt đầu với Willoughby Smith (1828-1891), một kỹ sư điện người Anh. Năm 1848, Smith bắt đầu làm việc cho công ty điện Gutta Percha với công việc chính là phát triển dây điện tín bằng sắt và đồng. Năm 1849, ông tham gia quản lý các dữ án dây điện tín lắp đặt ngầm và công việc của ông vẫn tiếp tục như thế trong suốt vài thập kỷ sau đó. Mãi cho tới…

Năm 1873, Smith phát triển phương pháp kiểm tra tính liên tục của dây dẫn đã được lắp đặt ngầm dưới lòng đất. Để chế tạo mạch điện kiểm tra, ông cần một loại bán vật liệu có điện trở cao và cuối cùng, ông đã chọn selen. Trên lý thuyết của Smith, selen hoàn toàn thích hợp với yêu cầu do ông đặt ra. Tuy nhiên, Smith đã phát hiện ra một vấn đề nảy sinh là: Vào ban đêm, các thanh selen hoạt động đúng với yêu cầu của Smith. Độ dẫn điện của selen tăng lên đáng kể khi tiếp xúc với ánh sáng mạnh.

Để kiểm chứng lại nguyên nhân, Smith đã đặt thanh selen vào bên trong chiếc hộp có nắp trượt. Khi nắp được đóng kín và không có ánh sáng lọt vào, thanh selen có điện trở cao nhất và thực hiện đúng nhiệm vụ ngăn cản dòng điện. Nhưng khi chiếc nắp được trượt ra để ánh sáng tràn vào, dòng điện chạy qua ngày càng được tăng cường và tăng theo cường độ ánh sáng chiếu vào.

Khi đó, Smith đã đăng tải phát hiện của mình trên tạp chí Nature với nội dung “Tác động của ánh sáng lên selen thông qua quá trình truyền tải dòng điện”. Bài báo cáo đã gây nên sự chú ý đối với nhiều nhà khoa học trên khắp Châu Âu thời bấy giờ. Với nghiên cứu của mình, Smith được công nhận là người đầu tiên khám phá ra chất quang điện của nguyên tố selen. Khám phá này đã tạo tiền đề cho việc chế tạo ra pin mặt trời sau này.

Năm 1874, nhà khoa học người Scotland với các định luật điện từ nổi tiếng, James Clerk Maxwell đã viết cho một người cộng sự của mình với nội dung rằng: “Tôi tận mắt chứng kiến tác dụng của ánh sáng đối với Selen. Điều đó thật bất ngờ. Đồng nung nóng không thể có phản ứng tương tự được. Đó là một điều tuyệt vời của Mặt Trời.”

Khám phá ra hiệu ứng quang điện trong vật liệu rắn

Tiếp đó, Smith đã thực hiện hàng lọat thí ngiệm để xác định xem bản chất ánh sáng mặt trời đã tác dụng như thế nào lên thanh selen? Tác dụng nhiệt hay tác dụng quang. Trong một thí nghiệm, ông đã đặt thanh selen vào trong một máng cạn chứa nước. Nước trong máng có tác dụng ngăn chặn nhiệt độ từ mặt trời nhưng vẫn giữ lại tác dụng của ánh sáng lên thanh selen.

Kết quả của thí nghiệm nói trên cho thấy, khi đã loại vấn đề nhiệt và chỉ giữ lại ánh sáng từ Mặt Trời, phản ứng của thanh selen vẫn giống như lần đầu Smith phát hiện ra. Và cuối cùng, ông đã đi đến kết luận rằng: Điện trở của selen thay đổi theo cường độ ánh sáng.

Sau Smith, trong số nhiều nhà khoa học tiếp tục nghiên cứu tác dụng của ánh sáng lên selen có 2 nhà khoa học tại Anh: giáo sư William Grylls Adams và học trò của ông là Richard Evans Day. Trong suốt cuối những năm 1870, 2 người đã thực hiện rất nhiều thí nghiệm với selen. Một trong số những thí nghiệm đó là thắp một cây nến đặt cách thanh selen đã qua sử dụng 1 inch.

Khi ngọn nến vừa được thắp lên, kim trên thiết bị đo điện lặp tức có phản ứng. Khi ánh sáng từ cây nến bị che lại, kim trên thiết bị đo điện lập tức trở về vị trí số 0. Phản ứng nhanh chóng này đã một lần nữa củng cố kết luận của Smith rằng: Chính ánh sáng mới là tác nhân chính ảnh hưởng đến tính dẫn điện của thanh selen. Vì nếu có ảnh hưởng của tác dụng nhiệt thì cây kim trong thiết bị đo điện sẽ dịch chuyển từ từ mà không tăng giảm đột ngột.

Nhóm 2 nhà nghiên cứu này cảm thấy mình đã khám phá ra một vấn đề hoàn toàn mới chưa từng có trước đó: Ánh sáng có khả năng gây ra “một dòng điện” trên một loại chất rắn. Adams và Day đã gọi tên dòng điện sản sinh nhờ ánh sáng là “quang điện”.

Mô đun đầu tiên

Nhà phát minh người Mỹ Charles Fritts và mô đun quang điện đầu tiên​

Vài năm sau đó, nhà phát minh người Mỹ Charles Fritts đã tạo nên một bước tiến lớn trong công nghệ khi chế tạo thành công một mô đun quang điện đầu tiên trên thế giới. Với mô đun đầu tiên, Fritts đã phủ một lớp mỏng và rộng lên một chiếc dĩa kim loại. Sau đó, ông đã dùng một lá vàng cực mỏng và bán trong suốt để bao phủ lên chiếc dĩa. Theo báo cáo của Fritts, mô đun selen do ông chế tạo có thể tạo ra một dòng điện “liên tục, ổn định và có cường độ đáng kể,… không chỉ với ánh sáng ban ngày, ánh sáng yếu mà còn hoạt động với cả ánh sáng bóng đèn.

Với thành công của mình, Fritts đã lạc quan dự đoán rằng mô hình các tấm quang điện của ông có thể thay thế được phương pháp tạo ra điện bằng cách đốt than vốn đang được sử dụng phổ biến bấy giờ. Tuyên bố của ông ra đời 3 năm sau khi Thomas Edison chế tạo ra phương pháp sản xuất điện bằng nhiệt lượng từ đốt nhiên liệu hóa thạch như than, dầu,…

Tiếp theo, Fritts đã gởi một tấm quang điện của mình cho Werner von Siemens, nhà phát minh với danh tiếng sánh ngang với Edison vào thời đó. Trước dòng điện mà tấm quang điện của Fritts tạo ra được, Siemens và các nhà khoa học Đức đã rất ấn tượng. Họ đã đồng loạt trình bày tấm quang điện cho Viện hàn lâm khoa học hoàng gia Phổ. Siemens đã báo cáo với giới khoa học trên thế giới rằng: “Mô đun của người Mỹ trình bày với chúng tôi, lần đầu tiên có thể chuyển đổi trực tiếp năng lượng của ánh sáng mặt trời thành năng lượng điện.”

Siemens đã nhận định rằng quang điện chính là khám phá khoa học quan trọng và sâu rộng nhất. James Clerk Maxwell (1831-1879), nhà vật lý người Scotland nổi tiếng với các định luật cơ bản về điện trường, đã rất đồng tình với nhận định của Siemens. Maxwell đã ca ngợi công trình nghiên cứu quang điện như là “một đóng góp vô giá đối với khoa học.”

Không chỉ Siemens mà cả Maxwell vẫn chưa tìm ra lời giải thích để lý giải cho hiện tượng quang điện​

Dù vậy, cả Siemens và Maxwell vẫn chưa thể hiểu được bản chất của hiện tượng quang điện. Maxwell tự hỏi rằng: “Phải chăng các bức xạ Mặt Trời là nguyên nhân của vấn đề hay nó gây ra các biến đổi hóa học trên thanh selen? Và dĩ nhiên, Siemens cũng chưa lý giải được bản chất của hiện tượng trên và ông đã kêu gọi “thực hiện một cuộc điều tra kỹ lưỡng để xác định căn nguyên hiện tượng quang điện của thanh selen phụ thuộc vào những yếu tố nào?”

Có rất ít các nhà khoa học đã hưởng ứng lời kêu gọi của Siemens. Nguyên nhân là do phát hiện ra quang điện có vẻ là trái với những hiểu biết của con người về khoa học. Vào thời bấy giờ, người ta chỉ biết tới việc nhiệt năng có thể chuyển đổi thành điện năng nhờ vào phát hiện trước đó của Edison. Còn thanh selen của Adams và Day hay “chiếc dĩa ma thuật” của Fritts bị cho là phản khoa học và không thể là sự thật do không dùng nhiệt lượng để có điện. Vì vậy, phần lớn các nhà khoa học đều từ chối tiếp tục nghiên cứu hiện tượng quang điện.

Tuy nhiên, vẫn có một nhà khoa học “dũng cảm”: George M. Minchin, giáo sư toán học ứng dụng tại trường cao đẳng kỹ thuật hoàng gia Ấn Độ. Minchin đã bắt tay vào nghiên cứu để lý giải hiện tượng quang điện. Hành động của Minchin đã bị giới khoa học bấy giờ cho là phản khoa học và là một việc làm điên rồ. Trên thực tế, Minchin đã tiến rất gần tới việc giải thích được tác động của ánh sáng lên thanh selen. Dù vậy, vẫn chưa có một lời giải thích thỏa đáng nào được đưa ra.

Cộng đồng khoa học thời của Minchin đã bác bỏ tiềm năng khai thác quang điện sau khi nhìn thấy kết quả từ 1 thử nghiệm của Minchin. Trong thử nghiệm, Minchin đã đặt mô đun quang điện vào trong một chiếc hộp bằng kính đen và đo lường nhiệt lượng bên trong chiếc hộp.

Thực hiện thử nghiệm bằng cách đặt mô đun quang điện trong một chiếc hộp bằng kính màu đen để hấp thụ ánh sáng mặt trời do Minchin thực hiện. Minchin đã lập luận rằng: “Rõ ràng là chiếc hộp bằng kính đen đã hấp thu tất cả các dạng năng lượng trong tia sáng mặt trời và chuyển thành nhiệt năng trong lòng hộp. Tuy nhiên, có thể điều này chưa chính xác.”

Minchin tin rằng: “có thể có một số dạng năng lượng Mặt Trời không bị hấp thu bởi các bề mặt màu đen. Và còn một cái gì đó cần phải khám phá ra. Chỉ khi nào khoa học có thể đo lường được năng lượng của các bước sóng khác nhau thì vấn đề quang điện mới được giải quyết.”

Phát kiến quan trọng của Einstein

Cùng quan điểm với Minchin, Albert Einstein cho rằng khoa học đương thời vẫn chưa phát hiện và đo lường tất cả những dạng năng lượng truyền từ Mặt Trời đến Trái Đất. Trong một nghiên cứu táo bạo được xuất bản vào năm 1905, Einstein đã nêu ra một thuộc tính của ánh sáng mà các nhà khoa học trước đó không công nhận. Ông đã phát hiện ra rằng ánh sáng bao gồm các “gói” năng lượng và ông gọi đó là quanta (hiện nay là các photon).

Thêm một đóng góp của Einstein cho sự phát triển của nhân loại với lý thuyết lượng tử ánh sáng, mở đường cho các nghiên cứu quang điện sau này.​

Đúng với những gì Minchin dự đoán, Einstein lập luận rằng lượng năng lượng mà các quanta ánh sáng sẽ được biểu hiện dưới các hình thức khác nhau và phụ thuộc vào bước sóng của ánh sáng. Một cách cụ thể hơn, bước sóng càng ngắn, năng lượng càng lớn. Bước sóng ngắn nhất có thể mang năng lượng nhiều gấp 4 lần so với bước sóng dài nhất.

Mô tả táo bạo của Einstein về bản chất ánh sáng, kết hợp với việc phát hiện ra electron đã làm cho hàng loạt nhà khoa học bắt đầu nghiên cứu kỹ hơn về tác động của ánh sáng. Tất cả những điều này đều là bước ngoặc cho sự phát triển của quang điện trong thế kỷ 19. Tất cả những bí ẩn trước đó xoay quanh ánh sáng mặt trời và quang điện đã có thể được lý giải trong khuôn khổ khoa học.

Trong những loại vật liệu như selen, các photon mang đủ năng lượng cần thiết có khả năng tác động vào những electron liên kết yếu và khiển nó di chuyển khác với quỹ đạo ban đầu. Khi dây dẫn điện được gắn với thanh selen, các electron được giải phóng bớt năng lượng photon sẽ di chuyển trong dây dẫn và tạo thành dòng điện. Các thí nghiệm trong thế kỷ 19 bắt đầu gọi hiện tượng trên là quang điện.

Việc lý giải một cách rõ ràng hiện tượng quang điện đã kích thích các nhà khoa học nghiên cứu sâu hơn nhằm tìm phương pháp tạo ra quang điện dưới quy mô công nghiệp. Từ đó thực hiện ước mơ khai thác nguồn năng lượng sạch và vô tận từ Mặt Trời.

Tiến sĩ Bruno Lange, nhà khoa học người Đức từng thiết kế nên mô đun quang điện tương tự như Fritt vào năm 1931 cũng đã từng dự đoán rằng: “Trong một tương lai không xa, hàng nghìn mô đun quang điện sẽ được tạo ra nhằm chuyển đổi quang năng thành điện năng. Điều này có thể thay thế cho các nhà máy thủy điện hay nhiệt điện, có thể tạo nên những chiếc xe hơi năng lượng mặt trời và thậm chí là có thể sử dụng cho mỗi hộ gia đình.”

Dù vậy, do pin năng lượng mà Lange chế tạo hoạt động kém hiệu quả hơn so với phiên bản của Fritt, chỉ chuyển hóa được khoảng 1% năng lượng từ ánh sáng Mặt Trời thành điện năng. Điều này không đủ để biện minh cho tính khả thi khi khai thác năng lượng Mặt Trời trên quy mô công nghiệp.

Những nhà tiên phong trong việc tạo ra quang điện đã gặp phải thất bại so với hy vọng ban đầu được đặt ra. Dù vậy, tất cả những nỗ lực của họ không hẳn là hoàn toàn vô ích. Một người cùng thời với Minchin còn dự đoán rằng “sẽ có lúc con người sẽ có thể thu được năng lượng từ Mặt Trời với hiệu suất cao và thậm chí là lưu trữ chúng. Điều này sẽ làm cho động cơ hơi nước và các loại động cơ khác hoàn toàn tuyệt chủng.”

Khoảng thời gian tiếp theo, không có một bước đột phá nào được ghi nhận trong việc khai thác quang điện. Thậm chí, người đứng đầu của tập đoàn năng lượng Westinghouse còn cho rằng: “pin năng lượng Mặt Trời sẽ không thể nào hấp đẫn các kỹ sư cho tới khi hiệu suất chuyển đổi từ quang năng thành điện năng đạt ít nhất là 50%.

Các tác giả của quyển sách Photoelectricity and Its Applications (Quang năng và những ứng dụng của nó) xuất bản vào năm 1949 đã đưa ra một dự đoán khá bi quan rằng: “Chỉ khi nào trong tương lai phát hiện ra một loại vật chất mới thì pin quang điện mới có thể khai thác năng lượng Mặt Trời cho các mục đích hữu ích cho con người.”

Pin năng lượng Mặt Trời hoàn thiện đầu tiên

Gerald Pearson, nhà khoa học tại phòng thí nghiệm Bell​

Mọi chuyện xoay quanh việc khai thác quang điện tưởng chừng như đã chấm dứt mãi cho tới khi các nhà nghiên cứu phát hiện ra các khả năng của Silic. Đây là bước ngoặc lớn trong sự phát triển của pin Mặt Trời. Các nhà nghiên cứu đã vô tình phát hiện ra khả năng này trong quá trình chế tạo ra các bóng bán dẫn silic – thành phần chính của mọi thiết bị điện tử ngày nay.

2 nhà khoa học là Calvin Fuller và Gerald Pearson thuộc phòng thí nghiệm nổi tiếng Bell Laboratories (hiện nay là phòng thí nghiệm AT&T), đều là những nhà tiên phong trong việc chế tạo điốt bán dẫn silic từ hình thành các lý thuyết ban đầu đến thực tiễn chế tạo. Pearson được các đồng nghiệp mô tả là một con người “thực nghiệm của thực nghiệm”. Còn Fuller, một nhà hóa học đã đóng góp một phần không nhỏ với việc phát hiện ra các chất bổ sung thêm vào silic làm cho nó từ một chất kém dẫn điện trở thành một chất dẫn điện ưu việt.

Trong nghiên cứu, Fuller đã cung cấp cho Pearson một mẩu silic có chứa một lượng nhỏ gali. Sự có mặt của gali làm cho silic tích sẵn tích điện dương. Theo công thức của Fuller, khi Pearson nhúng mẫu silic chứa gali vào trong bể chứa liti nóng, phần silic ngập trong dung dịch sẽ tích điện âm. Tại vị trí tiếp giáp giữa phần tích điện âm và phần tích điện dương, một điện trường bền sẽ được tạo thành. Đây chính là cấu trúc p-n nơi tất cả các hoạt động điện diễn ra. Cấu trúc chuyển tiếp p-n chính là thành phần trung tâm của điốt bán dẫn và của cả pin năng lượng Mặt Trời.

Trong quá trình kiểm tra mẫu silic pha gali, Pearson đã kết nối mẫu silic pha gali với dây dẫn, đặt nó dưới bóng đèn để chiếu sáng mẫu vật và dùng ampe kế để đo lường. Và trong thí nghiệm này xuất hiện một hiện tượng khiến Pearson hết sức ngạc nhiên… Một dòng điện được tạo ra khi ánh đèn chiếu vào mẫu silic. Đây là phát hiện ngẫu nhiên nhưng vô cùng quan trọng cho pin năng lượng Mặt Trời hiện nay.

Cấu trúc chuyển tiếp p-n, thành phần quan trọng nhất của điốt bán dẫn. Tiền đề chế tạo thành công pin năng lượng Mặt Trời hoàn thiện​

Trong khi Fuller và Pearson đang nghiên cứu cải tiến các điốt bán dẫn, một nhà khoa học khác cũng thuộc phòng thí nghiệm Bell, Daryl Chapin bắt đầu nghiên cứu việc năng lượng trong pin bị suy giảm khi sử dụng tại những khu vực có độ ẩm cao. Trong bất cứ khí hậu nào khác, loại pin khô truyền thống sẽ thực hiện tốt chức năng của mình. Duy chỉ tại những vùng khí hậu nhiệt đới nóng ẩm, vòng đời của pin trở nên ngắn hơn so với khi sử dụng tại các vùng khí hậu khác.

Phòng thí nghiệm giao nhiệm vụ cho Chapin tìm một loại pin năng lượng khác khả thi hơn như năng lượng gió, máy phát điện nhiệt, hơi nước,… Chapin đã đề xuất phát triển pin năng lượng Mặt Trời và đề xuất đã được phòng thí nghiệm chấp thuận.

Vào cuối tháng 2 năm 1953, Chapin bắt đầu thực hiện nghiên cứu quang điện. Để có thể đưa một tấm pin Mặt Trời vào khai thác thương mại, Chapin đặt ra mục tiêu là phải tạo ra được một tấm pin có thể tạo ra được dòng điện công suất 4,9 W trên mỗi mét vuông và hiệu suất chuyển đổi từ quang năng sang điện năng là cao nhất. Việc nghiên cứu của Chapin đã lan tới tai của Pearson. Ông đã nói với Chapin về phát hiện tình cờ của mình và đưa cho Chaplin mẫu silic pha gali.

Ngay lập tức, Chapin tiến hành thử nghiệm dưới ánh sáng Mặt Trời và nhận thấy phát hiện của Pearson là hoàn toàn chính xác. Theo đo lường của Chapin, pin Mặt Trời bằng mẫu Silic do Pearson cung cấp có hiệu suất chuyển đổi từ quang năng sang điện năng là 2,3%, lớn gấp 5 lần so với pin bằng Selen. Kể từ lúc đó, Chapin chuyển sang tập trung nghiên cứu phát triển pin Mặt Trời bằng silic.

Dựa trên các tính toán giả thuyết của mình, Chapin dự đoán pin Mặt Trời bằng silic có thể khai thác năng lượng Mặt Trời với hiệu suất lên tới 23% nếu đạt điều kiện lý tưởng. Tuy nhiên, mục tiêu ban đầu do ông đặt ra là hiệu suất chuyển đổi vào khoảng 6%. Đây là ngưỡng mà các kỹ sư thời bấy giờ đặt ra nếu muốn tạo thành một loại pin quang điện và coi nó là một nguồn năng lượng điện thực sự.

Callvin S. Fuller, đang phủ một lớp Bo lên Silic để tạo thành nên pin năng lượng Mặt Trời hoàn thiện đầu tiên trên thế giới.​

Tuy nhiên, dù đã thực hiện rất nhiều thử nghiệm với các phương pháp khác nhau, Chapin vẫn chưa có tiến triển so với ban đầu. Có những trở ngại xuất hiện và dường như không thể vượt qua. Và Chapin tìm lại những lý thuyết lượng tử ánh sáng của Enstein cũng như các nghiên cứu về bán dẫn trước đó của Pearson và Fuller. Cuối cùng, ông nhận ra một điều rằng cần phải nhờ đến sự giúp đỡ của Fuller nhằm đưa cấu trúc chuyển tiếp p-n càng gần với bề mặt pin càng tốt. Bên cạnh đó, Chapin nhận thấy bề mặt của tấm silic quá sáng bóng nên sẽ phản xạ lại một lượng ánh sáng đáng kể. Do đó, ông chọn cách phủ một tấm plastic mờ. Tiếp theo, ông phủ một lớp Bo lên trên bề mặt trên cùng của tấm pin quang điện để có thể thu được nhiều photon hơn.

Và kết quả cuối cùng là tấm pin mặt trời đúng như mục tiêu của Chapin đặt ra – có hiệu suất chuyển đổi 6%. Nhóm 3 nhà khoa học đã báo cáo công trình nghiên cứu với Viện hàn lâm khoa học quốc gia về những thành công đạt được.

Nhóm 3 nhà khoa học trong một thí nghiệm với pin năng lượng Mặt Trời (Từ trái qua: Pearson, Chapin và Fuller)​

Ngày 25 tháng 4 năm 1954, giám đốc của phòng thí nghiệm Bell đã chính thức giới thiệu tấm pin Mặt Trời cho giới báo chí. Đó là một bảng chứa các tế bào quang điện có thể tạo ra một lượng điện năng để quay một đu quay Ferris đường kính 21 inch. Ngày hôm sau tại Washington, các nhà khoa học tại Bell đã dùng nguồn quang điện thu được để chạy một chiếc máy thu thanh, phát giọng nói và những bài hát trước sự chứng kiến của các nhà khoa học hàng đầu từ khắp nước Mỹ. Các tờ báo tại Mỹ đã gọi đây là nhiên liệu vô tận và có thể thay thế cho than đá, dầu và sánh ngang với uranium.

Mẫu quảng cáo pin năng lượng Mặt Trời đầu tiên của phòng thí nghiệm Bell​

Cuối cùng thì pin năng lượng Mặt Trời đã chính thức là một nguồn năng lượng mới cho con người. Kể từ đó cho đến hiện nay, pin năng lượng Mặt Trời tiếp tục được cải tiến và hoàn thiện nhằm nâng cao hiệu suất làm việc nhưng phương pháp chế tạo đơn giản và có giá thành thấp. Vô số phương pháp đã được phát triển và áp dụng để cuối cùng là những tấm pin năng lượng Mặt Trời như chúng ta thấy hiện nay.


Tính công suất bộ chuyển điện và dung lượng Ắc quy

Tính công suất bộ chuyển điện và dung lượng Ắc quy

Khi chọn bộ chuyển điện và ắc quy sử dụng cho hệ thống điện năng lượng mặt trời (hoặc hệ thống lưu điện dự phòng), bạn cần phải cân nhắc kỹ 3 yếu tố sau đây: dung lượng của ắc quy, thời gian cần sử dụng và tổng công suất của toàn bộ tải. Các bước và công thức tính thường được sử dụng để tính toán như sau:

Khi chọn bộ chuyển điện và ắc quy sử dụng cho hệ thống điện năng lượng mặt trời (hoặc hệ thống lưu điện dự phòng), bạn cần phải cân nhắc kỹ 3 yếu tố sau đây: dung lượng của ắc quy, thời gian cần sử dụng và tổng công suất của toàn bộ tải. Các bước và công thức tính thường được sử dụng để tính toán như sau:

Bước 1: Tính tổng công suất sử dụng thực tế, bạn có thể tham khảo bảng tham khảo công suất của một sô thiết bị thông dụng trong gia đình ở bảng 1.

Bước 2: Tính công suất bộ chuyển điện, nếu thiêt bị sử dụng chỉ gồm toàn những thiêt bị điện tử có dòng khởi động nhỏ như màn hình LCD, máy tính, TV, đèn, quạt thì công suất của bộ chuyển điện nên lớn hơn 1,5 lần tổng công suất thực tế tính ở bước 1. Nếu thiết bị có dòng khởi động lớn như máy lạnh, tủ lạnh, máy in Laser, máy bơm thì công suất của Inverter tối thiểu phải gấp 2 lần tổng công suất, nếu số lượng thiết bị loại này nhiều có thể cần gấp 2,5 hoặc 3 lần tổng công suất.

Bước 3: Xác định thời gian sử dụng hệ thống, nên tính toán thời gian sử dụng thật hợp lý vì chi phí đầu tư cho 1kwh sử dụng điện 1 ngày cho hệ thống điện năng lượng mặt trời không nhỏ

Bước 4: Áp dụng công thức để tính toán bằng một trong các công thức sau:

* Tổng Công suất tiêu thụ trong hệ thống (W)

* Hiệu điện thế của mạch nạp bình ắc quy (V)

* Dung lượng của bình ắc quy (AH)

* Thời gian cần có điện của hệ thống (T)

* Hệ số năng suất của bộ kích điện (pf): thường là 0,7 hoặc 0,8

AH = (T * W)/(V * pf)

Dùng công thức này để tính tổng dung lượng của ắc quy (AH) nếu xác định trước thời gian sử dụng hệ thống T, tổng công suất của Inverter W, điện thế của bộ nạp V, pf = 0.7 hoặc 0.8 tuỳ vào từng loại Inverter

T = (AH * V * pf)/W

Dùng công thức này để tính thời gian hoạt động T của hệ thống nếu biết tổng dung lượng của ắc quy AH, tổng công suất của Inverter W, điện thế của bộ nạp V, pf = 0.7 hoặc 0.8 tuỳ vào từng loại Inverter

Những thông tin trên giúp bạn tham khảo được Inverter hay Ắc quy bao nhiêu là phù hợp với hệ thống của mình. Trên thực tế, khi bạn đặt mua một hệ thống điện mặt trời, công ty chúng tôi đã chọn loại phù hợp nhất với công suất của hệ thống đó.

Bảng 1: tham khảo công suất 1 số thiết bị thông dụng trong gia đình và văn phòng

Ví dụ cụ thể 1:

Lựa chọn bộ kích điện và ắc quy để chay 2 quạt cây, 2 bóng đèn neon 1m20, 1 bộ máy tính, 1 màn hình máy tính LCD 15″, 1 modem cho 1 văn phòng dùng khi mất điện mỗi tuần 1 ngày.

Bước 1: Công suất thực tế = (2*60) + (2*40) + 200 + 35 + 10 = 445W

Bước 2:  W = 445*1.5 = 667.5W  cần chọn công suất kích điện khoảng 700W, vì vậy nên chọn loại kích điện 1000VA, 24V là phù hợp.

Bước 3: Theo nhu cầu, thời gian sử dụng trong 1ngày nhưng nên tính toán hợp lý để nhân viên văn phòng làm khoảng T = 6h cho ngày mất điện (nghỉ trưa dài hơn, chiều về sớm hơn 1 chút).

Bước 4: Dung lượng ắc quy tính theo công thức 1 là:

* Theo công suất thực tế: AH = (6*445)/(24*0.7) = 158Ah. Vậy bạn cần mua ít nhất 2 ắc quy 150Ah/12V là đảm bảo yêu cầu.

* Theo công suất đỉnh: AH = (6*700)/(24*0.7) = 250Ah. Vậy bạn cần mua ít nhất 2 ắc quy 250Ah/12V là đảm bảo yêu cầu.

* Vậy lựa chọn mua ắc quy thế nào cho phù hợp? Nếu bạn sử dụng đúng công suất thực tế của thiết bị và chắc chắn dùng dưới 6h/ngày thì chỉ cần 2 ắc quy 150Ah, con nếu muốn dùng phát sinh thêm vài thiết bị nữa thì nên chọn 2 ắc quy loại 250Ah để đảm bảo không bị quá tải.

Ví dụ cụ thể 2:

Lựa chọn bộ chuyển điện và ắc quy để chạy 2 quạt cây, 1 bóng đèn neon 1m20, 1 TV LCD 32″ (4h mỗi ngày), 1 máy lạnh 1HP (chỉ dùng 2h cuối buổi sáng hoặc đầu buổi chiều khi trời nóng nhất).

Bước 1: Công suất thực tế = (2*60) + 40 + 80+ 750 = 990W

Bước 2:  W = 990*2 = 1980W  (cần chọn công suất bộ chuyển điện gấp 2 lần công suất thực tế) tức là khoảng 2000W, vì vậy nên chọn loại kích điện 2500VA, 48V là phù hợp

Bước 3: Theo nhu cầu, thời gian sử dụng 4h cho các thiết bị khác, riêng máy lạnh chỉ sử dụng 2h nên có thể quy đổi như sau T = 2.5h

Bước 4: Dung lượng ắc quy tính theo công thức 1 là A

* Theo công suất thực tế: H = (2.5*990)/(48*0.7) = 73.6 Ah. Vậy bạn cần mua ít nhất 4 ắc quy 75Ah/12V là đảm bảo yêu cầu.

* Theo công suất đỉnh: H = (2.5*1980)/(48*0.7) = 144Ah. Vậy bạn cần mua ít nhất 4 ắc quy 150Ah/12V là đảm bảo yêu cầu.

* Vậy lựa chọn mua ắc quy thế nào cho phù hợp? Nếu bạn sử dụng đúng công suất thực tế của thiết bị và dùng thời gian hạn chế nhất là máy lạnh thì chỉ cần 4 ắc quy 75Ah, còn nếu muốn dùng phát sinh thêm vài thiết bị nữa hoặc máy lạnh dùng thoải mái hơn 2h/ngày thì nên chọn 4 ắc quy loại 150Ah để đảm bảo không bị quá tải.


Tương lai năng lượng mặt trời

Tương lai năng lượng mặt trời

Theo các nhà khoa học ước tính, công suất năng lượng mà mặt trời chiến xuống trái đất là vào khoảng 174 triệu tỷ (174×1015) watt, nhưng trái đất chỉ hấp thụ được một nửa.

Theo các nhà khoa học ước tính, công suất năng lượng mà mặt trời chiến xuống trái đất là vào khoảng 174 triệu tỷ (174×1015) watt, nhưng trái đất chỉ hấp thụ được một nửa.

Nguồn dự trữ năng lượng mặt trời (có thể chuyển thành năng lượng hữu dụng) được ước tính tương đương với công suất khoảng 86 triệu tỷ watt. Đấy là một con số khổng lồ nếu so với công suất của nhà máy nhiệt điện Phả Lại chỉ khoảng 1 tỷ watt.

Mái nhà lợp tấm năng lượng mặt trời 2Kw. Tổng tiêu thụ năng lượng của con người trên thế giới hiện tại (tính tổng cộng tất cả các loại năng lượng như dầu hỏa, than đá, thủy điện, v.v.) khoảng 15 nghìn tỷ watt, tức là chỉ bằng khoảng 1/5000 công suất dự trữ của năng lượng mặt trời cho trái đất. Trong số 15 nghìn tỷ watt công suất năng lượng mà con người đang dùng, thì có đến 37% là từ dầu hỏa, 25% là than đá, và 23% là khí đốt (tổng cộng ba thứ này đã đến 85%), là những nguồn năng lượng cạn kiệt nhanh chóng và không phục hồi lại được, theo thông tin trên Wikipedia.

Với tốc độ khai thác hiện tại, thì các nguồn năng lượng hóa thạch sẽ gần như hết đi trong thế kỷ 21. Tương lai năng lượng của thế giới không thể nằm ở những nguồn này, mà phải nằm ở những nguồn năng lượng tái tạo (renewable energy), ví dụ như năng lượng gió và thủy năng. Nhưng tổng cộng dự trữ của tất cả các nguồn khác này (trong đó chủ yếu là gió) chỉ bằng khoảng 1 phần trăm nguồn dự trữ năng lượng mặt trời. Bởi vậy có thể nói tương lai năng lượng của thế giới chính là năng lượng mặt trời.

Câu kết luận phía trên không có gì là bí mật. Chỉ có điều, cho đến cuối thế kỷ 20, trình độ công nghệ của thế giới vẫn chưa đủ để chuyển hóa năng lượng mặt trời thành năng lượng hữu dụng với hiệu quả kinh tế cao, nếu không kể cách chuyển hóa gián tiếp thông qua nông nghiệp, ví dụ như trồng các loại cây như cây mía hay củ cải đường để ép ra lấy năng lượng ở dạng cồn. Tình hình đã hoàn toàn thay đổi và vào năm 2011 năng lượng mặt trời đã trở thành loại năng lượng có tính cạnh tranh rất cao về kinh tế với các loại hình năng lượng khác.

Máy bay sử dụng năng lượng mặt trời

Cơ sở vật lý để khai thác năng lượng mặt trời một cách công nghiệp là hiệu ứng ánh sáng chuyển thành điện (photovoltaic effect). Hiệu ứng này được nhà bác học Alexandre-Edmond Becquerel phát hiện từ năm 1839, cách đây gần 2 thế kỷ. Nhưng công nghệ điện mặt trời phát triển chậm, vì nó đòi hỏi sự phát triển của công nghệ vật liệu bán dẫn. Tấm điện mặt trời đầu tiên được lắp đặt để phục vụ Ngọn hải đăng Ogami (Ogami Lighthouse) ở đảo Ogami của Nhật Bản vào năm 1966, với công suất chỉ có 225 watt (bằng lượng tiêu thụ điện của vài cái bóng đèn). Từ đó đến nay, công nghệ điện mặt trời đã trải qua nhiều bước tiến bộ vượt bật. Nếu như vào những năm 1970, để có 1 watt công suất điện mặt trời cần chi phí 50 USD, thì đến năm 2010 giá thành đã giảm xuống dưới 2 USD cho 1W, và trong năm 2011 sẽ chỉ còn khoảng 1,20 USD cho 1 W, và còn có khả năng giảm tiếp trong những năm tới.

Ở mức giá 1,20 USD cho 1 W, điện mặt trời đã đạt được đến mức mà các chuyên gia gọi là «grid parity», tức là hiệu quả về mặt kinh tế không kém gì là đầu tư vào thủy điện, nhiệt điện. Trong tương lai gần, khi giá thành giảm đi thêm và hiệu quả chuyển ánh sáng thành điện tăng lên (hiện tại mới chỉ chuyển được khoảng 1/4 năng lượng ánh sáng thành điện), thì hiệu quả kinh tế của điện mặt trời sẽ còn vượt lên trên các loại năng lượng khác. Không những thế, điện mặt trời còn có những điểm ưu việt hơn hẳn các loại nhà máy điện khác: sạch, an toàn, không làm ô nhiễm môi trường như nhà máy nhiệt điện, không có nguy cơ gây thảm họa như là vỡ đập thủy điện hay nổ nhà máy điện nguyên tử; có thể lắp đặt mọi nơi, mọi kích thước, từ một cái mái nhà nhỏ cũng có thể phủ các tấm điện mặt trời để cung cấp điện cho nhà, cho đến khu trạm điện mặt trời lớn với công suất hàng chục triệu watt trở lên, đủ cung cấp điện cho cả một thành phố.

Từ những năm trước, khi mà giá thành của việc đầu tư điện mặt trời còn cao, chưa có hiệu quả kinh tế rõ rệt, nhiều nước tiên tiến trên thế giới như Pháp, Đức, Mỹ, Tây Ban Nha, v.v. đã khuyến khích đầu tư vào điện mặt trời bằng các trợ cấp của chính phủ. Chẳng hạn như nhà nước cam kết mua lại điện của những nhà dân lắp đặt hệ thống điện mặt trời với giá cao gấp mấy lần giá bán điện trong vòng nhiều năm, để người dân có thể thu hồi được vốn đầu tư vào điện mặt trời với tốc độ tương đương so với các đầu tư khác. Nhà nước bù lỗ để đổi lấy môi trường sạch sẽ, và khuyến khích đầu tư phát triển công nghệ điện mặt trời. Trong năm qua và những năm tới, các nước đang và sẽ cắt giảm dần trợ cấp chính phủ cho những người đầu tư vào điện mặt trời, nhưng bù lại giá thành đã rẻ đến mức không cần trợ cấp của chính phủ vẫn có lãi về kinh tế.

Nhà máy điện mặt trời ở Finsterwalde, Đức, hiện có công suất lớn nhất thế giới, 80.7 MW

Hiện tại, nước Đức đang đi đầu thế giới về công suất điện mặt trời. Riêng năm 2009, nước Đức đã lắp khoảng 3,7 tỷ watt công suất điện mặt trời, chiếm đến một nửa toàn bộ thị trường thế giới, và năm 2010 đã lắp thêm khoảng 7 tỷ watt điện mặt trời nữa (tức là bằng 7 lần nhà máy nhiệt điện Phả Lại). Các nước lớn khác như Mỹ, Nhật Bản, Pháp, Ý cũng có thị trường lắp lặt điện mặt trời trên 1 tỷ watt công suất mới một năm. Một trong những nước mạnh nhất trên thế giới hiện tại về sản suất các tấm điện mặt trời chính là Trung Quốc, với nhiều hãng lớn, xuất khẩu lắp đặt ra toàn thế giới, với tổng doanh thu hàng năm lên đến hàng chục tỷ đô la. Một ví dụ tiêu biểu là hãng LDK Solar, đóng đô ở thành phố Sinyu (Trung Quốc), với hơn 13 nghìn nhân viên, hiện được coi là hãng có hiệu quả cao và có giá thành các tấm điện mặt trời vào loại rẻ nhất, với doanh thu dự kiến năm 2011 vào khoảng 3,6 tỷ USD, phần lớn trong số đó là xuất khẩu.

Ngay ở những nước có ít nắng như là Phần Lan, chính phủ cũng đang khyến khích nhân dân lắp đặt điện mặt trời trên mái nhà. Đối với những nước nắng nóng nhiều như Việt Nam, thì điện mặt trời lại càng trở nên hấp dẫn. Cùng một bảng điện mặt trời, đặt ở Việt Nam có thể cho một lượng điện trong năm nhiều gấp đến 5-7 lần so với nếu đặt ở Phần Lan. Hơn thế nữa, các bảng điện mặt trời đặt trên mái nhà còn có tác dụng làm cho nhà đỡ bị hun nóng, đỡ tốn điện cho quạt gió hay điều hòa nhiệt độ. Những vùng hoang vu, sỏi đá, khô cằn, không tốt cho nông lâm nghiệp hay khu công nghiệp, cũng có thể biến thành các nhà máy điện mặt trời với hiệu quả kinh tế cao. Điện mặt trời có thể trở thành cơ hội cho Việt Nam giải quyết vấn đề năng lượng trong những năm tới nếu chúng ta có chương trình phát triển năng lượng hợp lý…

Một số câu hỏi hay về sử dụng ắc quy

Một số câu hỏi hay về sử dụng ắc quy

Dùng ắc quy có nguy hiểm gì không? Ắc quy bị nổ trong trường hợp nào? Hiện tượng quá nạp xảy ra trong trường hợp nào? Cách phân biệt ắc quy khô? ắc quy hư hỏng?…

Dùng ắc quy có nguy hiểm gì không? Ắc quy bị nổ trong trường hợp nào? Hiện tượng quá nạp xảy ra trong trường hợp nào? Cách phân biệt ắc quy khô? ắc quy hư hỏng?…

Dùng ắc quy trong kích điện hoặc dùng ắc quy cho các mục đích khác cũng có mối nguy hiểm của nó như cảnh báo thường ghi trên nhãn ắc quy, đó là: Có thể bị nổ, có thể gây ra ảnh hưởng bởi nước axít bắn ra.

Ắc quy bị nổ (và kéo theo là làm bắn axít ra) trong các trường hợp sau đây:

– Vô ý làm chập điện ắc quy: Thường là dây âm chạm vào dây dương hoặc ngược lại. Khi này ắc quy phóng một dòng rất lớn, gây phát tia lửa điện, gây nóng bình một cách nhanh chóng và có thể phát nổ.

– Gây phát ra tia lửa khi đang nạp ắc quy: Khi nạp ắc quy mà đặc biệt là nạp với một dòng điện lớn thì ắc quy sẽ sinh ra hai loại khí dễ cháy nổ là Hyđrô và Oxy. Bình thường với các ắc quy kín khí thì hai loại khí này sẽ kết hợp lại với nhau và tạo thành nước mà ít thoát ra ngoài, nhưng trong các ắc quy kiểu hở thì hai khí này bay vào không khí tại vị trí đặt ắc quy. Với một lưu lượng lớn hỗn hợp hai khí này thì khi có tác nhân là tia lửa (do hút thuốc lá, do đóng cắt các công tắc điện, cắm dây hoặc rút dây điện tại các phích gần đó, cặp hoặc ngắt cặp các mỏ kẹp cá sấu cho sạc….) thì có khả năng dẫn đến cháy nổ.

– Do quá nạp trong thời gian dài: Trong mọi chế độ nạp (giám sát bằng thiết bị nạp tự động hoặc chế độ nạp thủ công) thì cần phải giữ nhiệt độ ắc quy dưới mức 50 độ C. Việc nạp quá dòng, quá áp sẽ dẫn đến ắc quy bị nóng quá nhiệt độ này dẫn đến tuổi thọ ắc quy giảm nhanh và đặc biệt ắc quy có thể phát nổ nếu nhiệt độ quá cao.

Hiện tượng quá nạp xảy ra trong trường hợp nào?

Mọi hành động nạp điện vượt qua thông số cho phép với ắc quy đều có thể được gọi là quá nạp, do vậy hiện tượng quá nạp có thể xảy ra ngay khi ắc quy chưa đầy điện. Về điện áp và mức dòng điện nạp bạn có thể xem tại bài “Ắc quy dùng trong kích điện”, ở đây xin nêu một vài lý do dẫn đến hiện tượng quá nạp.

– Quá nạp do không kiểm soát được hoặc không biết kiểm soát quá trình nạp – đây là lý do xảy ra nhiều nhất bởi đa phần người sử dụng là người bình thường, họ giao phó việc lắp đặt hệ thống kích điện cho nhân viên bán hàng (hoặc người quen có hiểu biết) rồi thực hiện như chỉ dẫn. Đối với các bộ kích điện có chế độ nạp ắc quy tự động và thực hiện tốt thì không có vấn đề gì xảy ra, tuy nhiên đối với các bộ kích điện có chế độ nạp thủ công thì việc thực hiện không đúng chỉ dẫn (hoặc tính toán sai thời gian nạp do quá trình tiêu thụ điện ắc quy trước đó không hết hoàn toàn) thì rất dễ gây ra quá nạp.

– Sử dụng ắc quy dung lượng quá nhỏ nên không phù hợp với khả năng nạp của bộ kích điện: Mỗi kích điện có khả năng xuất một dòng nạp nào đó (ví dụ 5A, 10A, 15A…) khi ở trạng thái ắc quy cạn kiện, thông thường thì sử dụng các dòng nạp này đối với các ắc quy (hoặc hệ thống song song nhiều ắc quy) có dung lượng tổng lớn hơn 200Ah thì đều được, nhưng đối với các ắc quy có dung lượng quá nhỏ thì cũng gây quá nạp. Ví dụ một bộ kích điện có dòng nạp lớn nhất 12A, khi sử dụng một ắc quy axit kiểu hở có dung lượng 50Ah đến 75Ah thì sẽ gây ra hiện tượng quá nạp. Như vậy việc sử dụng các ắc quy dung lượng lớn hoặc đấu song song nhiều ắc quy sẽ hạn chế được phần nào hiện tượng này.

– Rủi ro do chất lượng của kích điện hoặc các yếu tố khách quan: Các bộ kích điện hiện nay thường được quảng cáo rằng có chế độ nạp 3 giai đoạn – kéo dài tuổi thọ ắc quy – tuy vậy thì chế độ sạc ắc quy này vẫn ẩn chứa những rủi ro nhất định (thực tế đã xảy ra như phản ảnh tại diễn đàn W về loại sản phẩm H). Thử phân tích sự rủi ro đối với kích điện H sẽ thấy: Biến áp dùng để biến đổi 12 lên 220V (xem sơ đồ ở bài về Kích điện) lúc này làm nhiệm vụ biến đổi điện từ mức 220V xuống tầm 14,5-15V để nạp điện, việc điều tiết chế độ nạp (3 giai đoạn) qua Thyristor được điều khiển bởi mạch điện. Bởi một lý do nào đó (nhận biết sai mức điện áp ắc quy, mạch điện bị hư hỏng dẫn đến làm việc sai, chất lượng linh kiện xuống cấp, bụi và độ ẩm làm dẫn tắt trên mạch in, rơi nước vào máy, côn trùng thâm nhập…có nhiều lý do khác nhau) mà sự điều khiển không đúng dẫn đến quá trình nạp diễn ra sai, nạp quá áp, nạp đầy không ngắt mà vẫn nạp tiếp….đây là các lý do dẫn đến hiện tượng bình ắc quy bị nóng và bốc mùi khi nạp. Vậy cũng không nên tin tưởng hoàn toàn vào chế độ nạp của các kích điện để giao phó hoàn toàn cho nó mà không chú ý kiểm tra đến chúng – bởi ngoài lý do lỗi sản phẩm thì còn nhiều lý do khách quan khác nữa để dẫn đến cháy nổ ắc quy. (Mà để giải quyết triệt để trường hợp này có lẽ nên nạp thủ công bằng bộ nạp điều chỉnh được LiOA như đã trình bày trong bài Ắc quy).

Nêu ra những rủi ro do kích điện hoặc các nguyên nhân khách quan không phải là việc phóng đại quá mức các nguy cơ rủi ro, mà nhằm giúp người dùng lường hết các khả năng có thể xảy ra để đề phòng hoặc hạn chế thấp nhất những sự việc không mong muốn.

Cách phân biệt ắc quy khô? ắc quy hư hỏng?

Như trong bài ắc quy đã nói: Nhiều người hiểu nhầm về ắc quy khô. Ắc quy khô một cách thực sự thì chúng không dùng điện môi H2SO4 bằng dung dịch nước – mà dùng dạng keo sệt. Loại ắc quy này có thể đặt nghiêng một góc quá 45 độ vẫn có thể hoạt động tốt và không thấy có dung dịch trào ra ngoài (trái với ắc quy thông thường và ắc quy kín khí – chỉ cần nghiêng quá 45 độ về các phía thì thấy trào dung dịch axít ra). Người mua có thể đề nghị cách thử này với người bán nếu họ cam đoan rằng đây là ắc quy khô một cách thực sự.

Đối với ắc quy kín khí thì cách phân biệt đơn giản nhất là chúng thường có một cảm biến (có người gọi là mắt thần) màu xanh hoặc nền xanh nhân đỏ và phần hướng dẫn xem trạng thái ắc quy thông qua các cảm biến đó được in trên nhãn của ắc quy. Ắc quy kín khí còn một đặc điểm cơ bản nữa là chúng không có các nút, núm để thoát khí của các ngăn trong bình.

Cách thử nghiệm ắc quy xem có bị hư hỏng hay không là quan sát bằng mắt và sử dụng dụng cụ kiểm tra ắc quy chuyên dùng (thường sẽ có ở cửa hàng bán ắc quy).

+ Khi quan sát bằng mắt: Xem tem, nhãn (có sắc nét không, có dấu hiệu mới bị dán lại hay không), xem các vết xước trên các cọc điện cực (nếu ắc quy mới thì có thể có phần nhựa chụp bảo vệ và còn dính liền với ắc quy, hoặc nếu không có thì xem phần cọc điện cực có nhiều dấu vết xước, vết cặp bằng kẹp răng cá sấu…). Quan sát bình có kích thường đồng đều và không bị phồng tại bất kỳ vị trí nào cả….

+ Sử dụng dụng cụ chuyên dùng: Tại các cửa hàng ắc quy thường có một thiết bị kiểm tra ắc quy theo cách đơn giản, thiết bị này có dạng một tay cầm đồng hồ giống hình khẩu súng và một dây dẫn nối với đầu nhọn để áp vào các cọc điện của ắc quy. Khi ấn hai đầu thiết bị này với ắc quy thì tuỳ theo mức điện áp hiển thị trên đồng hồ mà người ta xác định được ắc quy còn tốt hay đã hỏng. Nguyên lý của thiết bị này là cho một dòng điện cỡ vài chục A đi qua và đo sự sụt giảm điện áp của ắc quy, nếu như điện áp hiển thị trên đồng hồ vào khoảng trên 10V thì ắc quy chưa bị hỏng (các tham số về dòng và áp cụ thể còn tuỳ thuộc vào dung lượng của ắc quy).

+ Sử dụng cách đơn giản hơn: Sử dụng tại nhà – chỉ để kiểm tra sự giảm dung lượng bình sau thời gian hoạt động: Sau khi nạp đầy, phóng điện bằng một bóng đèn sợi đốt 12V công suất vài chục W rồi căn cứ vào dòng điện tiêu thụ (lấy công suất chia cho điện áp) và thời gian phóng điện mà xác định dung lượng còn lại của ắc quy.

Ắc quy khô hay ắc quy nước bền hơn?

Với các loại ắc quy sử dụng axit H2SO4 thì thứ tự độ bền một cách tương đối của chúng như sau:

– Ắc quy khô sử dụng GEL –> bền hơn–> Ắc quy kín khí –> bền hơn–> Ắc quy hở thông thường.

Phép so sánh trên chỉ phù hợp khi tất cả các loại ắc quy này được nạp và sử dụng đúng cách. Tuy nhiên theo tôi thì không nên dùng loại ắc quy hở thông thường cho kích điện bởi các lý do sau:

– Sau một chu kỳ sử dụng phát điện, điện áp ắc quy giảm xuống mức thấp và khi nạp điện trở lại thì thường dòng nạp này lớn (thông thường các kích điện được tích hợp bộ nạp có thể nạp với dòng 10 đến 20A), khi nạp với dòng điện này với các ắc quy cỡ 100Ah trở xuống thì có thể gây cháy nổ – đặc biệt nếu quên mở các nắp của các ngăn ắc quy (mà việc mở nắp này thường dễ bị quên hoặc không được biết đến đối với người sử dụng thông thường).

– Ắc quy axít kiểu hở khi nạp thường phát sinh khí dễ cháy và một số loại khí có chứa lưu huỳnh – gây khó chịu và độc hại với người sử dụng.

Khi dùng kích điện: Ắc quy viễn thông tốt hơn ắc quy khởi động?

Đây là câu hỏi được nhiều người quan tâm và đã được nhiều người tư vấn rằng ắc quy viễn thông tốt hơn ắc quy khởi động hoặc là không nên dùng ắc quy khởi động cho kích điện…Tư vấn này tuy không sai nhưng có phần mập mờ để hướng người mua đến loại hàng hoá có lãi cao hơn hoặc cùng được đẩy giá lên cao hơn so với việc sử dụng một loại khác gần tương đương.

Để hiểu chi tiết hơn về vấn đề ắc quy viễn thông và ắc quy khởi động thì tôi có vài ý sau:

– Đặt câu hỏi: Ắc quy viễn thông là gì, nó có gì khác biệt với thông thường? Tôi có xem ảnh các ắc quy được cho là “ắc quy viễn thông” thì chúng không ghi trên nhãn của chúng là “viễn thông”, “dành cho viễn thông” hoặc cái gì đó tương tự như vậy. Vậy thì ắc quy viễn thông không phải là một loại ắc quy riêng biệt để có thể phân loại chúng với ắc quy kín khí, ắc quy kiềm, ắc quy khô… (ví dụ đơn giản nhất là hãng sản xuất ắc quy Tia Sáng cũng không phân biệt như vậy trong các sản phẩm của mình).

Vậy thì không có “ắc quy viễn thông” như cách nói mật mờ, tuy vậy lại có các loại ắc quy thường dùng trong viễn thông và ắc quy thường dùng cho khởi động động cơ. Tiêu chí yêu cầu của hai loại ắc quy này do chế độ làm việc của chúng nên chúng cũng khác nhau:

Ắc quy dùng cho khởi động thì yêu cầu phải có khả năng phát ra một dòng khởi động lớn (cỡ vài trăm Ampe) trong thời gian ngắn (vài giây) rồi lại có thể lặp lại được việc phóng dòng lớn sau vài giây nghỉ, ắc quy làm việc trong điều kiện nhiệt độ ngoài trời (hoặc lớn hơn), ắc quy phải chịu được các rung động nhất định…Ắc quy dùng trong mục đích khởi động thường là loại ắc quy axit kiểu hở (có thể bổ sung được nước cất, đa phần các hãng sản xuất xe hơi đều dùng loại ắc quy này cho mục đích khởi động) và trong một số trường hợp người ta còn dùng ắc quy kín khí.

Ắc quy dùng cho viễn thông thì không cần phải có yêu cầu như trên, nhưng yêu cầu cần thiết cho chúng là có khả năng phát dòng điện (vài chục Ampe) trong thời gian dài, dòng điện tự phóng thấp, không cần bảo dưỡng, không gây phát sinh các loại khí ăn mòn hoặc dung dịch ra môi trường xung quanh….Điều kiện làm việc của ắc quy dùng trong viễn thông không cần khắc nghiệt như loại ắc quy khởi động nêu trên bởi chúng thường đặt trong nhà (thậm chí trong phòng điều hoà) và được đặt cố định tại một vị trí nhất định. Mọi ắc quy dùng trong các UPS (các loại công suất), các thiết bị lưu điện dự phòng khác đều yêu cầu tính chất như trên và chúng thường thuộc loại ắc quy kín khí hoặc ắc quy khô (dùng gel).

Vậy ắc quy dùng trong viễn thông thực chất thuộc loại ắc quy gì? Chắc chắn chúng không phải là ắc quy axít kiểu hở bởi không phù hợp với tiêu chí yêu cầu, vậy chúng chỉ có thể thuộc loại ắc quy kín khí hoặc ắc quy khô (dùng dạng gel thay cho nước để chứa axít).

Quay lại với câu hỏi chính: Khi dùng kích điện thì ắc quy dùng trong viễn thông tốt hơn ắc quy khởi động? Đúng là như vậy, chúng chắc chắn dùng tốt hơn đối với các ắc quy axít kiểu hở – nhưng đối với các ắc quy hiện thường được dùng cho mục đích khởi động nhưng có cấu tạo kiểu kín khí thì điều này chưa chắc chắn bởi ắc quy dùng trong viễn thông phần lớn vẫn là ắc quy kín khí (phần còn lại là ắc quy khô thực sự, nhưng loại này đắt hơn nhiều), một mặt khác thì sử dụng ắc quy kín khí trong cùng điều kiện dòng phóng thấp, trong môi trường làm việc trong nhà thì tuổi thọ của chúng cũng được tăng lên nhiều so với điều kiện làm việc dưới các nắp capô của xe hơi.

Tóm lại là điều kiện kinh tế cho phép thì nên dùng ắc quy dùng cho viễn thông, nếu muốn tiết kiệm thì có thể dùng các loại ắc quy kín thí thông thường – không nên sử dụng các ắc quy axít kiểu hở cho kích điện bởi chúng tiềm tàng nhiều khả năng gây nguy hiểm.

Ắc quy 100Ah phát được công suất bao nhiêu?

Có một vài người thắc mắc câu hỏi trên và với các thông số tương tự vậy (chẳng hạn ắc quy 150Ah phát được công suất bao nhiêu…). Để trả lời câu hỏi này thì trước hết phải biết được rằng chiếc ắc quy 100Ah đó (hay 150Ah ) đang dùng cho bộ kích điện có công suất là bao nhiêu. Lý do đơn giản là hệ thống kích điện – ắc quy không thể phát được công suất vượt mức giới hạn của nó.

Bây giờ giả sử rằng kích điện có công suất đủ lớn theo yêu cầu (chẳng hạn như là 3000VA và chỉ sử dụng 1 ắc quy 12V thôi) thì với dung lượng 100Ah sẽ phát được công suất bao nhiêu? Câu trả lời là: Ắc quy với dung lượng này nếu được nạp đủ điện và có chất lượng còn tốt thì hoàn toàn có thể phát được công suất bằng công suất của kích điện – có nghĩa là chúng hoàn toàn có thể phát được ra một dòng điện cỡ 250 A để phục vụ cho công suất trên của kích điện (ắc quy kín khí Thunder do GS nhập về hoặc Atlas với dung lượng 100Ah có thể phát dòng tức thời đến 500A). Tuy nhiên nếu phát bằng dòng điện lớn như vậy thì dung lượng tích điện của ắc quy sẽ giảm đi rất nhiều (thấp hơn nhiều so với con số 100Ah của nó), một mặt khác phát điện một dòng lớn trong thời gian dài sẽ làm nóng bình, gây nổ bình hoặc làm hư hỏng ắc quy.

Vậy một ắc quy thì nên phát với dòng điện bằng bao nhiêu là hợp lý? Người ta khuyên rằng chỉ nên chấp nhận phát với dòng điện bằng dung lượng ắc quy trong thời gian ngắn (phục vụ việc khởi động các động cơ hoặc trong thời điểm quá độ khi bật các thiết bị sử dụng điện); Nên phát với dòng dưới 1/3 dung lượng bình trong thời gian dài hơn (như vậy với ắc quy 100Ah thì nên phát dưới 33A). Cá nhân tôi cho rằng chỉ nên phát với dòng điện bằng dòng điện nạp cho phép – tức là ắc quy kín khí thì phát với dòng bằng 1/4 dung lượng bình (25A cho bình 100Ah) và với ắc quy axít kiểu hở thì phát dòng bằng 1/10 dung lượng bình – tức 10A cho bình 100Ah. Mặc dù chưa thấy các tài liệu nào nói về điều này là hợp lý, nhưng tôi suy luận từ việc nạp điện với mức dòng này là được phép thì việc phát điện với mức dòng đó (quá trình phát là ngược lại với quá trình nạp) là an toàn là phù hợp.

Như vậy bạn có thể chọn mức công suất phát với dòng bằng 1/3 dung lượng bình (tức công suất 12V x 33A = xấp xỉ 400VA với một bình 100Ah) hoặc tốt hơn là với dòng điện bằng 1/4 hoặc 1/10 dung lượng bình để ắc quy đạt được tuổi thọ cao nhất. Trong trường hợp muốn phát các công suất cao hơn mức này thì nên mắc song song với chúng thêm các ắc quy nữa cùng dung lượng.

Nguồn : sưu tầm